<u>Sec 4.3 Linear independence / Bases</u>

<u>Goal</u>: Find "minimal spanning sets"

Q: What constitutes "minimal"?

DEF. Let VI, ..., VK & RM.

- 1) V1,..., Vk are linearly dependent if at least one of them is a linear combin. of the others.
- 2) V1,..., Vk are <u>lin.</u> <u>indep.</u> if <u>no one</u> of them is a lin. comb. of the others
- · When 3 or more vectors involved, "which one" is the linear combination is harder to guess.
- · To sidestep this, use the equivalent definition:

DEF (equiv) Try to find scalars x1,...,xk
to make linear combination

always have trivial solution $(x_1,...,x_k) = (0,...,0)$

- 1)* If there is some other $(x_1,...,x_k) \neq (0,...,0)$
 - making $\Phi = \emptyset$, then v_1, \dots, v_k are lindepen.
- 2) If no other (x_1, \dots, x_k) , \Rightarrow lin indep.

* Why?
$$Ex: 2v_1 - 3v_2 + 5v_3 = 0$$

 $\Rightarrow v_1 = \frac{3}{2}v_2 - \frac{5}{2}v_3$

Ex
$$u = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $v = \begin{bmatrix} 7 \\ 8 \end{bmatrix}$, $w = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

Are u, v, w lin. indep?

$$x_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 7 \\ 8 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 7 \\ 8 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 7 \\ 8 \end{bmatrix} + x_3 \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Ax = $v = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Note that more columns than rows in $v = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} =$

(infinitely many solutions)

Any choice of t gives a combination which = \emptyset $\underline{\mathcal{E}} \times \cdot \cdot \cdot \cdot \cdot \cdot = 0 \Rightarrow \underline{\mathbf{x}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow 0\underline{\mathbf{u}} + 0\underline{\mathbf{v}} + 0\underline{\mathbf{w}} = \underline{\emptyset} \dots$ (already knew) $t=1 \Rightarrow x=\begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \Rightarrow \frac{1}{2}x - \frac{1}{2}x + 1x = 0$ $(\Rightarrow \underline{w} = -\frac{1}{2}\underline{u} + \frac{1}{2}\underline{v})$ $t = -3 \Rightarrow \chi = \begin{bmatrix} -3/2 \\ 3/2 \\ -3 \end{bmatrix} \Rightarrow \frac{3}{2} u + \frac{3}{2} v - 3 w = 0$ so, u, v, w are linearly depen. Same principle for more than 3 vectors (* see book ex's)

another way to (sometimes) check depen indep: compute determinant

Read note "independence & determinant"

Note: adding/Dropping vectors from a set can change depen/indep, so need to recheck!
"minimal generating set" -> called a "basis"

Set $\{v_1, \dots, v_n\}$ makes a basis for a set V if 1) span $\{v_1, \dots, v_n\} = V$

2) $\{v_1, ..., v_n\}$ is a lin. indep set.

DEF The standard ordered basis for
$$\mathbb{R}^n$$
 is
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \stackrel{\text{DEF}}{=} \left\{ \underbrace{e_1, e_2, \dots, e_n} \right\}$$
As in \mathbb{R}^3 , $\left\{ \underbrace{e_1, e_2, e_3} \right\} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$
in \mathbb{R}^4 $\left\{ \underbrace{e_1, e_2, e_3, e_3} \right\} = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$

in
$$\mathbb{R}^4$$
, $\{e_1, e_2, e_3, e_4\} = \{\begin{bmatrix}0\\0\\0\end{bmatrix}, \dots, \begin{bmatrix}0\\0\\0\end{bmatrix}\}$

Sets can have many different bases. How do we find them?

DEF: The dimension of a vec. sp. or subspace of Rn is the number of linear independent vectors required to make a basis for the

- · of course, dim(Rn) = n
- * sets with more or less than dim. fail either part 1) or 2) of basis defin: (by example)

Ex: Does { [8], [3], [-1], [3]} make a basis

 N_0 : The set has 4 vectors, but $dim(R^3) = 3$.

(# vectors) > (dim. of space) always means the set is linearly depen. ("yc free variables guaranteed")

So the above set is not a basis for R3

$$\underline{\mathcal{E}_{\mathbf{X}}}$$
: Does $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \left\{ \underline{e_1}, \underline{e_2}, \underline{e_3} \right\}$

make a basis for R4?

4 lin. indep vectors are required to make a basis of \mathbb{R}^4 , so this is not a basis of \mathbb{R}^4 ...

They are linearly indep tho, so it must be that they do not span \mathbb{R}^4 .

(# of vectors) < (dimen.) ⇒ set cannot be a spanning set. May or may not be lin. indep.

 \underline{ex} : Compute a basis for Null (\underline{A}) , with $\underline{A} = \begin{bmatrix} 1 & 3 - 15 & 7 \\ 1 & 4 - 19 & 10 \\ 2 & 5 - 26 & 11 \end{bmatrix}$

Last time: Null (A) = span $\left\{ \begin{bmatrix} 3\\4\\1 \end{bmatrix}, \begin{bmatrix} 2\\-3\\0 \end{bmatrix} \right\}$ for N

because vectors $\underline{u}, \underline{v}$? are lin. indep. too, $\{\underline{u}, \underline{v}\}$ makes a basis for Null (A).